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Forcing independent velocity distributions in an experimental granular fluid
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We present experimental results on the velocity statistics of a granular fluid with an effective stochastic
thermostat, in a quasi-two-dimensional configuration. We find the base state, as measured by the single particle
velocity distribution P(c) in the central high-probability regions, to be well described by P(c)
= sl 1 +a25,(c?)]: Tt deviates from a Maxwell-Boltzmann fy by a second order Sonine polynomial S,(c?)
with a single adjustable parameter a,. We find a, to be a function of the filling fraction and independent of the
driving over a wide range of frequencies and accelerations. Moreover, there is a consistent overpopulation in
the distribution’s tails, which scale as P=exp(-A X ¢*?). To our knowledge, this is the first time that Sonine
deviations have been measured in an experimental system.
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I. INTRODUCTION

The study of granular flows has received a recent upsurge
of interest in physics [1]. This has been motivated by both
the relevance of such flows to a wide range of industrial and
geological processes, and by the realization that granular ma-
terials provide an excellent test bed for a number of funda-
mental question in the context of modern fluid dynamics and
nonequilibrium statistical mechanics [2]. Granular media are
ensembles of macroscopic particles, in which kinetic energy
(Kg) can be preferentially injected in the N=10—10" trans-
lational and rotational degrees of freedom of the center of
mass of the particles without effecting the N, = 10?3 internal
degrees of freedom of each particle. Therefore, the granular
temperature 7=Kg/N is 10-20 orders of magnitude larger
than the molecular temperature 7=K;/N,. In this sense the
molecular temperature is irrelevant. Moreover, granular ma-
terials are intrinsically dissipative since energy from the Kp
of the particles is lost (converted) through inelastic collisions
and frictional contacts to the molecular temperature. Hence,
any dynamical study of a granular media requires an energy
input, which typically takes the form of vibration or shear
[3,4]. This interplay between energy injection and dissipation
forces the system to be far from equilibrium and granular
fluids are therefore not expected to behave similarly to the
equilibrium counterparts of classical fluids [2].

However, we have recently shown that the structure of a
uniformly heated quasi-2D granular fluid is identical to that
found in simulations of equilibrium hard disks [5]. Further,
we find that the mean-squared displacement of grains shows
diffusive behavior at low density and caging behavior as the
density is increased until particles are completely confined
above the freezing point, just as in ordinary molecular fluids
[6]. These surprising results provide a partial experimental
justification for the theoretical treatment of granular flow by
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analogy with molecular fluids using standard statistical me-
chanics and kinetic theory. A large number of kinetic theories
of granular flows [7-24] have been produced starting in
1980s. The results of these theories are balance equation
analogous to the Navier-Stokes equations for the density, n,
the average velocity, v,, and the average kinetic energy per
particle or temperature, T, as well as, equations of state and
transport coefficients, which are functions of n, vy, and T.
The heart of these formulations is the single particle distri-
bution function f")(r,v,7), which measures the probability
of a particle a position r having velocity v. The field equa-
tions are derived from moments of f)(r,v,7). For example,
the density, n, is the zeroth moment, the average velocity, v,,
is the first moment, and the temperature, 7, is the second
moment. The transport coefficients are determined from non-
equilibrium perturbations of f(r,v,7). Generally the equi-
librium or steady-state distribution is assumed to be indepen-
dent of space and to have Maxwell-Boltzmann form f)
=fup=A exp(=|v—vy|>/2T), although, recent work has ex-
plored the use of other base states or steady-state distribu-
tions [21,23,24].

Two important questions one may ask are as follows: (1)
What is the base state /() for a driven granular fluid? and (2)
Does it have a universal form? If it was to be characterized
by a small number of parameters such as the moments of the
f“) distribution as in the case for ideal fluids, one would be
able to advance a great deal in developing predictive con-
tinuum models for granular flows since the theoretical ma-
chinery from kinetic theory could be readily applied. The
careful experimental study and characterization of this base
state is therefore important in order to develop a theory for
granular media, similar to that of regular molecular liquids.

There has been a substantial amount of experimental, nu-
merical, and theoretical work to address these issues in con-
figurations where the energy input perfectly balances the dis-
sipation such that the system reaches a steady state, albeit far
from equilibrium. These nonequilibrium steady states are
simplified realizations of granular flows more amenable to
analysis, but the insight gained from their study should be
helpful in the tackling of other more complex scenarios. One
feature that has been consistently established in experiments
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is that single particle velocity distribution functions deviate
from the Maxwell-Boltzmann distribution [25-31]. In par-
ticular, the tails (i.e., large velocities) of the experimental
distributions exhibit a considerable overpop_ulation and have
been shown to scale as 11 (v;) ~exp[(v;/\T;)¥*] where v; is
a velocity component and T,:(v?} is the granular tempera-
ture. This behavior is in good agreement with both numerical
[32] and theoretical [33] predictions. Even though these tails
correspond to events with extremely low probabilities, they
increase the variance of the distribution. The variance of the
distribution is 7, the average kinetic energy of the particles.
Using a Gaussian to represent this type of distribution leads
to major discrepancy in the region of high probability at the
central part of the distribution (low velocities) [31] which
have, thus far, been greatly overlooked in experimental work.
Note that requiring the variance of FD(v,) to be the granular
temperature greatly constrains the functional form that the
distribution can take.

A model system that has been introduced to study this
question is the case of a homogeneous granular gas heated
by a stochastic thermostat, i.e., an ensemble of inelastic par-
ticles randomly driven by a white noise energy source [34].
Recently, there have been many theoretical and numerical
studies on this model system [32,33,35-38] where the steady
state velocity distributions have been found to deviate from
the Maxwell-Boltzmann distribution. van Noije and Ernst
[33] studied these velocity distributions based on approxi-
mate solutions to the inelastic hard sphere Enskog-
Boltzmann equation by an expansion in Sonine polynomials.
The results of their theoretical analysis has been validated by
numerical studies using both molecular dynamics [32] simu-
lations and direct simulation Monte Carlo [36,38]. The use of
Sonine corrections is particular attractive since it leaves the
variance of the resulting velocity distribution unchanged but
leads to a non-Gaussian fourth moment or kurtosis, K # 3.

We have addressed the above issues in a well controlled
experiment in which we are able to perform precision mea-
surements of the velocity distributions of a uniformly heated
granular fluid. A novel feature of our experimental technique
is that we are able to generate macroscopic random walkers
over a wide range of filling fractions and thermalize the
granular particles in a way analogous to a stochastic thermo-
stat. Even though our experimental thermostat is not per-
fectly Gaussian, we are able to reproduce many of the fea-
tures observed in the numerical and theoretical work
mentioned above. It is, therefore an ideal experimental real-
ization in which to test the applicability of some of the ki-
netic theory ideas. In our earlier study [5], we focused on the
structural configurations of this granular fluid and revealed
striking similarity to those adopted by a fluid of equilibrium
hard disks. Here we concentrate on the dynamical aspects of
this same experimental system, as measured by the single
particle velocity distribution, P(c), and observe a marked
departure from the equilibrium behavior, i.e., from the
Maxwell-Boltzmann distribution. We quantify these devia-
tions from equilibrium and find that the kinetic theory frame-
work is appropriate and extremely useful in characterizing
the behavior in our system.

In particular, we find a consistent overpopulation in the
distribution’s high energy tails, which scale as stretched ex-
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ponentials with an exponent 3/2. In addition, we experimen-
tally determine the deviations from a Gaussian of the full
distributions following a Sonine expansion method and find
them to be well described by a second order Sonine polyno-
mial correction. We establish that the central high probability
regions of the velocity distributions are well described by

P(c) = fyil + a>(1/2¢* = 3/2¢% + 3/8)}, (1)

where a, is the non-Gaussianity parameter that can be related
to the kurtosis of the distribution and the forth-order polyno-
mial is the Sonine polynomial of order 2. This functional
form of P(c) was found to be valid over a wide range of the
system parameters. The parameter a, strongly depends on
filling fraction and is independent of the frequency and di-
mensionless acceleration of the driving over a wide range. To
our knowledge, this is the first time that the Sonine correc-
tions of the velocity distributions have been measured in an
experimental system. Even though the way we inject energy
into the granular fluid is specific we expect that many of the
features we report should also be observed in other driven
granular systems.

This paper is organized as follows. In Sec. II we briefly
review the theoretical framework of kinetic theory along
with the steady state solution to the Enskog-Boltzmann equa-
tion using the Sonine polynomial expansion method. In Sec.
IIT we present our experimental apparatus and describe how
the homogeneous granular gas with random heating is gen-
erated. In Sec. IV we study the thermalization mechanism
and analyze the trajectories of a single particle in the granu-
lar cell, thereby characterizing our effective stochastic ther-
mostat. In Sec. V, using the concept of granular temperature,
we then quantify the dynamics of the experimentally ob-
tained nonequilibrium steady states, for a number of param-
eters, namely the filling fraction, the driving parameters (fre-
quency and acceleration), and the vertical gap of the cell. In
Sec. VI we turn to a detailed investigation of the probability
distribution functions of velocities as a function of the sys-
tem parameters. In particular, we quantify the deviations
from Maxwell-Boltzmann behavior at large velocities (tails
of the distributions) in Sec. VI A. In Sec. VI B we extend the
deviation analysis to the full range of the distribution using
an expansion method that highlights deviations at low ve-
locities and allows us to make a connection with Sonine
polynomials. We finish in Sec. VII with some concluding
remarks.

II. BRIEF REVIEW OF THEORY

We briefly review the key features of the kinetic theory
for granular media pertinent to our study. The number of
particles in a volume element, dr, and velocity element, dv,
centered at position r and velocity v is given by
fi(r,v,t)dr dv, where f!(r,v,t) is the single particle distri-
bution function. Continuum fields are given as averages over
fl(r,v,t). For instance, the number density, n, average ve-
locity, v,, and granular temperature, T, are given respectively
by

n(r,t)EJfl(r,v,t)dv, (2)
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v,(r,0) = i ffl(r,v,t)v dv, (3)

T(r,1) = é J}fl(r,v,t)(v -v,)%dv, (4)

where d is the number of dimensions. It is important to note
that the granular temperature 7 is not the thermodynamic
temperature but, by analogy, the kinetic energy per macro-
scopic particle (explained in detail in Sec. V). For the spa-
tially homogeneous and isotropic case, we refer to the single
particle distribution function as f!(v,) and consider only a
single component of the velocity, i.e., f"(v;,7). From now
on we drop the index i. It is also convenient to introduce a
scaled distribution function f!(c,f) where the velocity is
scaled by a characteristic velocity such that, c:v/\,m,
where T(r) is the granular temperature and equal to the vari-
ance of fl(c,1).

The stochastically heated single particle distribution func-
tion f(c,1) satisfies the Enskog-Bolizmann equation,

g = Q(F.f) + Fiuf- 5)

where, Q, is the collision operator, which accounts for the
inelastic particle interactions and the Fokker-Plank operator,
Frp, accounts for the stochastic forcing [33,39]. We are in-
terested in a stationary solution of Eq. (5) where the heating
exactly balances the loss of energy due to collisions and the
temperature becomes time independent. van Noije and Ernst
[33] obtained steady state solutions to Eq. (5) by taking the
series expansion of f(c) away from a Maxwell-Boltzmann,

Jmps 1.
f(c) :fMB(C) 1+ E apSp(Cz) 5 (6)
p=1

in terms of the Sonine polynomials S,(c*) where a, is a
numerical coefficient for the pth order. The deviations from
the MB distribution are thus expressed in terms of an expan-
sion on Sonine polynomials. The Sonine polynomials, which
are known as associated Laguerre polynomials in different

contexts, are defined as

n o (=D)"p+1/2)!
SP(C)_,%(n+1/2)!(p—n)!n!

(A" (7)

These are orthogonal according to the relationship

n!

~ 1
f S, (DS (A)de = > 3m (8)

0

To further simply the calculation, terms higher than O(2) are
typically neglected, such that

f(e) = fup(e){1 + a2S2(02)}, )

where
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FIG. 1. Schematic diagram of the experimental apparatus. The
ensemble of stainless steel spheres was sandwiched in between two
glass plates, separated by a 1.905 mm thick annulus (dark gray).
The top glass plate was always optically flat. The bottom glass plate
could either be (a) optically flat or (b) rough by sand blasting.

1
fu(e) = ——=exp(=c?) (10)
N7

is the Maxwell-Boltzmann distribution and

n 1, 3, 3

52(0)—20 2c +8 (11)
is the O(2) Sonine polynomial for 2D. The first Sonine co-
efficient, a,, is zero according to the definition of tempera-
ture [40]. The second Sonine coefficient, a, is the first non-
trivial Sonine coefficient and hence the first nonvanishing
correction to the MB distribution and can be related to the
kurtosis K=3(a,+1) of the distribution.

III. OUR EXPERIMENTS

In Fig. 1 we present a schematic diagram of our experi-
mental apparatus, which is adapted from a design introduced
by Olafsen and Urbach [26,29]. An ensemble of stainless
steel spheres (diameter D=1.19 mm) were vertically vi-
brated in a shallow cylindrical cell, at constant volume con-
ditions. The cell consisted of two parallel glass plates set
horizontally and separated by a stainless steel annulus. This
annulus had an inner diameter of 101.6 mm and, unless oth-
erwise stated, was 1.905 mm thick, which set the height of
the cell to be 1.6 particle diameters. This constrained the
system to be quasi-two-dimensional such that any two
spheres could not fully overlap. However, in the 2D projec-
tion the particles have a minimum separation of r,,;,=0.8D
(rather than r;,=D for a strictly two-dimensional system).
Hence the extreme situation of a maximum overlap between
two particles (6=D—-r,;,=0.2D) occurred when one of the
particles of the adjacent pair was in contact with the bottom
plate and the other in contact with the top plate, as shown in
Fig. 1(a). We have also performed experiments to explore the
effect of changing the height of the cell.

The top disk of the cell was made out of an optically flat
borofloat glass treated with a conducting coating of ITO to
eliminate electrostatic effects. For the bottom disk of the cell,
two variants were considered: A flat glass plate identical to
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the top disk—Fig. 1(a)—and a rough borosilicate glass
plate—Fig. 1(b). In the second case, the plate was roughened
by sand blasting, generating random structures with length
scales in the range of 50-500 wm. The use of a rough bot-
tom glass plate improves on the setup of Olafsen and Urbach
[26], who used a flat plate. As it will be shown in Sec. IV and
the Appendix, it had the considerable advantage of effec-
tively randomizing the trajectories of single particles under
vibration, allowing a considerably wider range of filling frac-
tions to be explored.

The horizontal experimental cell was vertically vibrated,
sinusoidally, via an electromagnetic shaker (VG100-6 Vibra-
tion Test System). The connection of the shaker to the cell
was done via a robust rectangular linear air-bearing which
constrained the motion to be unidirectional. The air-bearing
ensured filtering of undesirable harmonics and nonvertical
vibrations due to its high stiffness provided by high-pressure
air flow in between the bearing surfaces. Moreover, the cou-
pling between the air-bearing and the shaker consisted of a
thin brass rod (25.4 mm long and 1.6 mm diameter). This
rod could slightly flex to correct any misalignment present in
the shaker-bearing system, while being sufficiently rigid in
the vertical direction to fully transmit the motion. This
ensemble—shaker—brass rod—air-bearing—ensured a high
precision vertical oscillatory driving.

The first control parameter was the filling fraction of the
steel spheres in the cell defined as

¢=NMDQF

R (12)

where N is the number of spheres (with diameter D
=1.19 mm) in the cell of radius R=50.8 mm. The filling
fraction ¢ is therefore defined in the projection of the cell
onto the horizontal plane. The second control parameter was
the height, &, of the experimental cell which we varied from
1.3D<h<23D.

The granular cell was set horizontal in order to minimize
compaction effects, inhomogeneities and density gradients
which otherwise would be induced by gravity. This way, a
wide range of filling fractions, 0 < ¢$=0.8, could be accu-
rately explored by varying the number of spheres in the cell,
N, down to a resolution of single particle increments. More-
over, as we shall show in Secs. IV and V, we were able to
attain spatially uniform driving of the spheres in the cell due
to the use of the rough glass bottom plate.

The forcing parameters of the system were the frequency,
f, and amplitude, A, of the sinusoidal oscillations. From
these, it is common practice to construct a nondimensional
acceleration parameter,

FzAQﬂﬁz
g

. (13)

where g is the gravitational acceleration. We worked within
the experimental ranges (10<f<100) Hz and 1 <I'<6.
The dynamics of the system was imaged from above by
digital photography using a gray-scale DALSA CA-D6 fast
camera, at 840 frames per second. The granular layer was
illuminated from below, in a transmission configuration, by a
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16 X 16 array of high intensity LEDs. In this arrangement the
particles obstruct the light source and appear as dark circles
in a bright background.

We have developed particle tracking software based on a
two-dimensional least squares minimization of the individual
particle positions, which is able to resolve position to sub-
pixel accuracy. By focusing on a (15X 15)mm? imaging win-
dow located in the central region of the full cell we were
typically able to achieve resolutions of 1/20-1/10 of a pixel
(which corresponds to 2.5-5 um). From the trajectories of
the particles we could easily calculate an approximately in-
stantaneous discrete velocity as

[v'(1; + Ar)| = \"/[vx(tj +AD P +o,[(t;+ A0 (14)

with
x(1;+ Ar) = x'(1)) q (1 +An) = y'(1)
= n =
U At a Yy At

(15)

for the ith particle in an experimental frame at time #; where
Ar=1.19 us is the time interval between two frames and
(x,y) are the cartesian coordinates on the horizontal plane.
For the remainder of this paper we shall be interested in the
nature of the probability distribution function of velocities,
P(v), of the driven particles. Statistics for calculating the
P(v) distributions were constructed by analyzing 2048
frames at an acquisition rate of 840 frames per second which
corresponded to a total acquisition real time of 2.4381 s.

IV. SINGLE PARTICLE DRIVING

We first concentrate on the case of driving a single par-
ticle in the vibrating experimental cell. For each experimen-
tal run, a single sphere was positioned in the field of view of
the camera with the aid of a strong magnet temporarily
placed beneath the imaging window. The magnet was then
removed and the trajectory of the sphere immediately re-
corded. This was repeated 100 times to obtain statistics. Note
that all the analysis of the particle trajectories is performed
for the projection onto the horizontal (x-y plane). Typical
such 2D trajectories for two runs with a flat and rough bot-
tom glass plates are shown in Figs. 2(a) and 2(b), respec-
tively. In both cases, the cell was vibrated at a frequency of
/=50 Hz and dimensionless acceleration of I'=4.0. During
each cycle of the driving, the motion of the single particle
was thermalized due to collisions with both top and bottom
glass plates.

By comparing Fig. 2(a) with Fig. 2(b), it is clear that the
particle excursions obtained by using a rough bottom plate
are considerable larger than those for a flat plate. This can be
readily quantified by calculating the probability density func-
tions of the velocities of single particles, P(v), which we plot
in Fig. 2(c), for both cases. We now define the average ki-
netic energy, also known as granular temperature, of a single
particle as the variance of its velocity distribution,
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FIG. 2. (Color online) Typical trajectories for single particle
driven using a (a) rough or (b) flat bottom glass plate. Each of the
trajectories is 2.438 s long. (c) Probability distribution function of
velocities for a single particle using either a rough (O) or a flat ((J)
bottom glass plate. Driving parameters: f=50 Hz; ['=4.0.

1
T=T+ Ty=§(<v§>+(v§>), (16)

where v, and v, are the two orthogonal components of the
velocity in the 2D horizontal plane and the brackets {-) de-
note time averages for the time series of the velocity com-
ponents for 100 realizations of the particle trajectory. Note
that since we are dealing with monodisperse spheres, in this
definition of kinetic temperature the mass of the particle is
taken to be unity. Here we neglect the vertical motion of the
spheres along z since we are interested in the projection of
the dynamics into the horizontal plane. We have measured

rough=9-33 X 10™* m? s72 if a rough bottom glass plate is
used and T3§,=2.51X10"°m?s72 for the case of the flat
bottom glass plate. This yields a temperature ratio between
the two cases of T },o/ T f1,,=380.

Indeed, this is a signature that the structures in the rough
plate were considerably more effective than the flat plate in
transferring and randomizing the momentum of the steel
spheres in the vertical direction (due to the sinusoidal verti-
cal oscillation of the cell) into the horizontal plane. Upon
vertical vibration, the steel spheres constrained in the experi-
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FIG. 3. Snapshots of typical configurations of the granular layer
at various values of the filling fraction: (a) Dilute gas, ¢=0.34, (b)
dense liquid, ¢=0.67, and (c) thermalized crystal, ¢=0.80. Driving
parameters: f=50 Hz; ['=4.0.

mental cell exhibit vigorous motion in the vertical direction
since they collide with the oscillating rough bottom and flat
top glass plates. When the particles collide with the peaks
and valleys of the rough bottom plate, part of the vertical
momentum get transmitted onto the horizontal plane in the
form of random kicks. The full three-dimensional motion of
the spheres is complex but once regarded the 2D horizontal
projection, the granular particles feel an effective stochastic
thermostat that is homogeneous and isotropic across the cell,
albeit non-Gaussian. We can therefore regard this system as a
spatially uniform heater of the granular particles, thereby
generating macroscopic random walkers. For this reason, and
as it will become more clear in Sec. V, where we will com-
ment on the issue of isotropy, we shall focus our experimen-
tal study in using the rough bottom glass plate. There we
shall also comment further on the interaction between the
particles and the oscillating rough substrate.

V. DRIVEN MONOLAYERS: GRANULAR TEMPERATURE

Having investigated the dynamics of single particles in
the granular cell, we now turn to the study of granular mono-
layers at higher filling fractions. In Fig. 3 we present typical
configurations, at three values of ¢, for a granular layer
driven at f=50 Hz and I'=4 with a rough bottom plate. The
snapshot in Fig. 3(a), for ¢=0.34, corresponds to a dilute
state in which the particles perform large excursions in be-
tween collisions as they randomly diffuse across the cell. If
the filling fraction is increased, as in the example of the
frame shown in Fig. 3(b) for ¢=0.67, one observes a higher
collision rate characteristic of a dense gaseous regime. For
even higher values of filling fraction the spheres ordered into
an hexagonally packed arrangement and became locked into
the cage formed by its six neighbors. The system is then said
to be crystallized as shown in the typical frame presented in
Fig. 3(c) for ¢=0.80. The structural configurations associ-
ated with the crystallization transition, as a function of filling
fraction, were studied in detail in [5] and the caging dynam-
ics, as crystallization is approached in [6].

As defined in the previous section, the granular tempera-
ture is the average kinetic energy per particle. For this the
brackets (-) in Eq. (16) now denote both time and ensemble
averages for all the spheres found within the imaging win-
dow. Moreover, one can define 7,=1/2(v% and T,
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single particle, the dynamics of the granular layer using a flat
or a rough bottom plate is remarkably different. If the rough
bottom plate is used, the granular temperature depends al-
most monotonically on the filling fraction. At low ¢, T is
approximately constant as the layer simply feels the thermal
bath and shows little increase in 7 until ¢~ 0.5 is reached.
As the filling fraction is increased past ¢~ 0.5, the granular
temperature rapidly decreases due to energy loss in the in-
creasing number of collisions and due to a decreasing avail-
able volume.

For the case of using a flat bottom plate, the nonmono-
tonic dependence of T on ¢ is more dramatic and it is diffi-
cult to attain homogeneous states below ¢<<0.4. This is due
to the fact that at those filling fractions (the limiting case
being the single particle investigated in the previous section)
the particles perform small excursions and interact with their
neighbors only sporadically. Hence little momentum is trans-
ferred onto the horizontal plane. For ¢>0.5, there is an in-
crease of temperature with increasing filling fraction as in-
teraction between neighbors becomes increasingly more
common, up to ¢~0.7 after which the curve for the flat
bottom plate coincides with the curve for the rough bottom
plate. It is interesting to note that the value at which this
matching occurs is close to the point of crystallization of
disks in 2D, ¢,=0.716 [5,41,42]. At this point, the large
number of collisions between neighboring particles thermal-
izes the particles, independently of the details of the heating,
i.e., of whether a flat or rough plate is used.

The behavior of the layer was therefore more robust by
using a rough bottom plate. Moreover, this allowed for a

Dimensionless acceleration, T"

FIG. 5. Dependence of the granular temperature, 7, on driving
parameters: (a) Frequency f and (b) dimensionless acceleration I'.
The filling fraction is kept constant at ¢=0.59.

wider range of filling fractions to be explored, in particular in
the low ¢ limit. Further detailed evidence for the advantage
of using the rough bottom plate over a flat one is given in the
Appendix. Hence, all results presented in the remainder of
this paper correspond to experiments for which a rough glass
plate was used for the bottom plate of the experimental cell.

In Fig. 5 we present the dependence of the granular tem-
perature of the layer on the forcing parameters for a fixed
value of filling fraction, ¢=0.59. There is a monotonic in-
crease of T with both f and I'.

The final control parameter that we investigated was the
height of the experimental cell which we varied by changing
the thickness of the interplate annulus by using precision
spacers. The range explored was 1.3D <h<<2.3D. Note that
for h=D there would be no clearance between the spheres
and the glass plates and no energy would be injected into the
system. On the other hand for 2>2D, spheres could overlap
over each other and the system ceases to be quasi-2D. The
dependence of the granular temperature on cell gap is plotted
in Fig. 6. It is interesting to note that 7 appears to depend
linearly on the gap height.

One can therefore regard changing 4, f and I" as a way of
varying the temperature of the granular fluid, which can this
way be tuned up to a factor of 8.
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FIG. 6. Dependence of the granular temperature, 7, on cell gap,
h, which was varied by changing the thickness of the interplate
annulus. Filling fraction was kept constant at ¢=0.59 and the di-
mensionless acceleration I was fixed to 4.

VI. PROBABILITY DENSITY FUNCTIONS
OF VELOCITIES

We now turn to the distribution functions of particle ve-
locities under various conditions of filling fraction, fre-
quency, dimensionless acceleration and gap height. In Fig. 7
we plot the probability density function of a velocity com-
ponent, P(v;), where the index i represents the component x
or y, for specific values of ¢, f, and I'. From now on we drop
the index in v; since we showed in the previous section that
the dynamics of the system is isotropic in x and y (horizontal
plane). Moreover, when we refer to velocity we shall mean
velocity component, i. The width of the observed P(v) differs
for various values of the parameters. This is analogous to the
fact that the temperature (i.e., the variance of the distribu-

202 -0.1 0 0.1 0.2
v, (ms 1)

FIG. 7. (Color online) (a) Probability distribution function
(PDF) of velocities, P(v), for specific values of filling fraction (¢),
frequency (f), and dimensionless acceleration (I'). See legend for
specific values.
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tion) is different for various states set by ¢, f and I', as
discussed in the previous section. It is remarkable, however,
that all the P(v) distributions can be collapsed if the veloci-
ties are normalized by the characteristic velocity,

v, = \2(v2) =27, (17)

where the brackets (-) represent time and ensemble averaging
over all the particles in the field of view of the imaging
window. This collapse is shown in Figs. 8(a) and 8(b) and
was accomplished not only for various filling fractions but
also for a range of frequencies and dimensionless accelera-
tions.

To highlight the quality of the collapse we have separately
plotted P(c) for the four lowest values of filling fraction (¢
=0.27, 0.32, 0.34, 0.39) along with the P(c) for a single
particle in Fig. 8(a) and all other data in the ranges 0.44
<¢$<0.8, 40 Hz<f< 100 Hz and 1.4<I'<6 in Fig. 8(b).
At low values of the filling fraction (¢<<0.44) the collapse is
satisfactory but deviations are seen at low c. In particular,
near ¢=0 the distributions exhibit a sharp peak with a clearly
discontinuous first derivative which reflects the fact that for
these value of low ¢ the resulting gases are not collisionally
driven but are dominated instead by the underlying thermo-
stat (cf. distribution for single particle). However, this sharp
peak becomes increasingly smoother as the filling fraction is
increased, presumably due to the increasing number of par-
ticle collisions, and by ¢~0.44, it has practically disap-
peared. On the other hand, for ¢»>0.44 the collapse onto a
universal curve is remarkable for such a wide range of ¢, f
and I'. The choice of the lower bounds for frequency and
acceleration, f=40 Hz and I'=1.4, in the data plotted will be
addressed in Sec. VI B. Moreover, this collapse of P(v) is
also attained for various values of the gap height (1.3D<h
<2.3D), as shown in Fig. 8(c). From now onwards, we shall
perform our analysis in terms of the reduced velocity, ¢
=v/v,.

We stress the universal collapse of the experimental ve-
locity distribution functions for a wide range of parameters
and the clear deviation from the Maxwell-Boltzmann
(Gaussian) distributions of Eq. (10)—solid curves in Figs.
8(a)—-8(c). This is particularly visible at high velocities where
there is a significant overpopulation of the distribution tails
in agreement with previous theoretical [33] numerical [32]
and other experimental work [27,30,43]. To quantify these
deviations from Gaussian behavior, our analysis will be two-
fold. First we shall analyze the non-Gaussian tails of the
velocity distributions (Sec. VI A). Even though these tails
correspond to events associated with large velocity, the prob-
ability of them happening is extremely low. However, this
overpopulation at the tails implies that, if the distribution is
to remain normalized with a standard deviation given by the
average kinetic energy per particle, clear deviations from
Gaussian at the central regions of low ¢ (high probability) of
the distribution must necessarily also be observed. In Sec.
VI B we study this deviations in the context of the Sonine
corrections introduced in Sec. II.

In the Appendix we provide the data corresponding to Fig.
7 and Figs. 8(a) and 8(b) of the velocity distributions ob-
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FIG. 8. (Color online) (a), (b) PDF of velocities, P(c), in which
all velocities for each distribution were normalized by its standard
deviation. Data for a range of ¢, f, and I". (c) PDF of velocities for
a range of values of cell gap, 4. Other parameters set to ¢=0.59,
/=50 Hz, and I'=4.0. (a)-(c) See legend for specific values of the
experimental parameters. The solid line in each plot is a Gaussian
with unit standard deviation.

tained using the optically flat bottom plate, instead of the
rough plate used here. We shall show that the P(v)s for the
flat bottom plate exhibit much stronger nonuniversal devia-
tions from Gaussian behavior and that the collapse of P(c) is
highly unsatisfactory. This highlights, as mentioned in Sec.
V, the considerable advantage in our experimental technique
of using the rough plate to generate the granular fluid.

PHYSICAL REVIEW E 75, 051311 (2007)
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FIG. 9. (Color online) (a) Tails of P(c) for specific values of
filling fraction (¢), frequency (f), and dimensionless acceleration
(") and (b) gap height (k). The solid lines correspond to stretched
exponentials of the form ~exp(—Ac*?) whereas the dashed lines
correspond to the Gaussian behavior of the form ~exp(-Ac?).

A. Deviation at large velocities: The tails

Recently, van Noije and Ernst [33] have made the theo-
retical prediction that the high energy tails of the velocity
distributions of a granular gas heated by a stochastic thermo-
stat should scale as stretched exponentials of the form

P(c) ~ exp(—Ac*?), (18)

where A is a fitting parameter. Note that the theoretical argu-
ment of van Noije and Ernst involves a high ¢ limit and
hence one does not expect this stretched exponential form to
be valid across the whole range of the distribution.

To check the applicability of Eq. (18) to describe our data,
we have calculated the quantity g(c¢)=-In(=In[P(c)]), which
we plot in Fig. 9(a) for a variety of filling fractions, frequen-
cies, and dimensionless accelerations. Indeed, within the
ranges considered and, in the limit of large ¢, g(c) tends to a
straight line with slope —3/2 for all values of the control
parameters, in excellent agreement with the scaling of Eq.
(18). In Fig. 9(a) we have excluded filling fractions ¢
<0.44, since as discussed in the previous section, the gases
obtained in this range are dominated by the thermostat rather
than collisions and the main ingredient for the prediction of
Eq. (18) is the role of inelastic collisions. This behavior of
the tails of the velocity distribution is also observed for vari-
ous values of the gap height, /4, of the experimental cell, as
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shown in Fig. 9(b). Note the crossover from Gaussian-like
(dashed line with slope —2) to the stretched exponential
(solid line with slope —3/2) at ¢~ 1, which is particularly
clear at the larger values of ¢. For low ¢ the tails of the
distribution tend to be closer to the stretched exponential
throughout the range —1.1<<log(c)<1.l. We stress that
Eq.(18) has been derived in the limit of large ¢ and is there-
fore only expected to be valid at the large ¢ end of the tails.
This theoretical work says however nothing about the value
of velocity, c,, above which such tails should be observed.
There is, at present, no theory that predicts the value of the
CTOSSOVET, C,.

The ¢, that we observe in our experiments [¢S**~ 1 which
corresponds to probabilities of occurrence of the order of
P(c)/P(0)~ 107"] is systematically higher than that found in
molecular dynamics simulations of inelastic hard spheres,
e.g., that of Moon et al. [32]. Our results are, however, in
agreement with other experimental work [27]. In the previ-
ously mentioned numerical work by Moon et al. the cross
over occurs at the slightly higher values of 0.5<Inc)™
~ 1.5 which correspond to probabilities of the order of
103 <P(c,)/P(0) <1072 It is interesting to note that the
crossover for both experiments and molecular simulations is,
however, occurring at probabilities 3 to 5 orders of magni-
tude larger than the value of P(c,)/P(0)~ 107 proposed by
Barrat ef al. [44,45] using the direct simulation Monte Carlo
(DSMC) method. Even though experiments, molecular dy-
namics and DSMC simulation are all in agreement with van
Noije and Ernst stretched exponential tail result (i.e., such
tails exists), there is a clear inconsistency regarding its range
of validity, i.e., the location of the crossover which cannot be
accounted for by any existing theory.

We expect the location of ¢, to be a function of the
strength and frequency of the forcing as well as the interpar-
ticle coefficient of restitution. The dependence on the first
two parameters (frequency and strength of forcing) should be
related to the g-parameter recently introduced by van Zon
and MacKintosh [46]. The dependence on the coefficient of
restitution, €, was shown to be relevant by Moon et al. There
is therefore a need for new theoretical work that takes ¢ and
€ into account to predict the location of ¢, in experiments.
We hope that our experimental results will be motivating in
this direction.

B. Sonine corrections to the distribution

Having looked at the tails of the distributions, i.e., at large
¢, we now extend our deviation analysis based on an expan-
sion method to the full ¢ range of the distributions. In par-
ticular, this highlights the deviations from Gaussian behavior
in the central high probability regions of P(c) near ¢=0. In
Sec. I we discussed that in the solution of the Enskog-
Boltzmann equation for inelastic particles in a stochastic
thermostat, a Sonine expansion is usually performed such
that the deviations from Gaussian are described by a Sonine
polynomial (i.e., a fourth order polynomial with well defined
coefficients) multiplied by a numerical coefficient a,.

To check the validity of this assumption of the kinetic
theory, we shall follow a procedure analogous to that em-
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ployed in the numerical study of Ref. [32]. We calculate the
deviation, A(c), of the experimental velocity distributions,
P(c), from the equilibrium Maxwell-Boltzmann, fyp, such
that

P(c) = fuml1 + Ale)], (19)

where fy is given by Eq. (10). By comparing Eq. (19) to
Eq. (9) for the theoretical case of inelastic particles under a
stochastic thermostat, we expect that

P(c) = fupl1 + ay8,(c?)], (20)

such that the experimental deviations from equilibrium take
the form of the Sonine polynomial of order 2, S,(c?), i.e.,

A(e) = ay(1/2¢* = 3/2¢ + 3/8), 21

where the parameter a, can be directly related to the kurtosis
K of the distribution as a,=K/3—1. However, because of
sampling noise at high ¢, we have taken a, as a fitting pa-
rameter rather than determining it directly from K, although
in most cases there is little difference. Note that the fitting of
the experimental data to Eq. (20) was done over the whole
range of the distribution, which gives an intrinsic weighting
proportional to the probability. In Figs. 10(a)-10(d) we plot
these experimental deviation from equilibrium, A(c), for four
representative values of filling fraction, along with the
order-2 Sonine polynomial (solid curve) as given by Eq. (21)
and fitting for a,. At low filling fractions, for example ¢
=0.34—Fig. 10(a)—the second order Sonine fit is approxi-
mate but unsatisfactory for small ¢ where a sharp cusped
peak is present. This cusp is reminiscent of the underlying
dynamics of the rough plate thermal bath as evidenced by the
cusp at ¢=0 for the single particle distribution presented in
Fig. 2(c) and discussed previously. On the other hand, for
larger values of the filling fraction (in particular for ¢
>(.44) the experimental data is accurately described by the
second order Sonine polynomial.

To further evaluate the relevance of the Sonine polynomi-
als to describe the experimental deviation from Maxwell-
Boltzmann, in Fig. 11 we plot the experimental A(c) along
with both the order-two (p=2) Sonine polynomial and the
higher order Sonine expansion of the form EgzzapS ,(c?). The
second order Sonine polynomial alone is responsible for the
largest gain in accuracy of the corrections from MB (hori-
zontal dashed line). The higher order Sonine expansion in-
deed provide a better fit but the overall improvement is only
marginal (see Fig. 14).

In Fig. 12(a) we present the dependence of the second
Sonine coefficient a,, the single fitting parameter in Eq. (21),
as a function of filling fraction. The coefficient a, initially
decreases with increasing filling fraction up to ¢=0.65, after
which it shows a rapid rise. We also study the dependence of
a, on the driving frequency (f) and dimensionless accelera-
tion (I') for a single value of the filling fraction ¢=0.59,
which we present in Figs. 12(b) and 12(c), respectively. For
lower values of frequency (20-40 Hz) we get a monotonic
drop in a, with increasing frequency. For f>40 Hz, the co-
efficient a, then levels off and remains approximately con-
stant at a,=0.171£0.023. For I'>2.0, the coefficient a, re-
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FIG. 10. (Color online) Experimental devia-

tion function from Gaussian behavior A(c) for (a)
$=0.34, (b) $=0.53, (c) #=0.64, and (d) ¢
=0.80. The solid line is the order-2 Sonine poly-
nomial of the form a,(1/2c*~3/2¢?>+3/8) where

a,, the second Sonine coefficient, is the only ad-
justable parameter.

©) g
< <
[%2] %)
jon oy
K] o
k] g
> >
) )
o a
-0.5 0.5
2 A 0 1 2 -2 -1 0 1 2
Reduced velocity, ¢ Reduced velocity,c
(d)
O )
] <
%2} [%2]
jon oy
o o
kS g
> >
] <)
o a
-0.5 -0.5
2 - 0 1 2 -2 -1 0 1 2

Reduced velocity, ¢

mains approximately constant at a,=0.193+0.029. We have
plotted these two datasets at fixed ¢ and varying f and T’
back in Fig. 12(a) and the behavior of a, is found to be
consistent with the previous data set with varying ¢ at fixed
(f,I')=(50 Hz,4.0). It is interesting to note that a scatter of
points is obtained if a, for the three previous data sets is

1.5 ‘ :

® Experimental data
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FIG. 11. (Color online) Experimental deviation function from
Gaussian behavior A(c) for ¢=0.66. The solid line is the Sonine
polynomial a,(1/2¢*~3/2¢?+3/8) with one single fitting param-
eter: a,=0.171. The dashed line is the higher order Sonine polyno-
mial description of the form Egzzapsp(cz) with the following (five
fitting parameters) Sonine coefficients: a,=0.1578, a3=-0.0656,
a4=0.1934, a5=-0.1637, and az=0.0832.

Reduced velocity,c

plotted as a function of the corresponding granular tempera-
tures. Moreover, for the data set for varying ¢ the depen-
dence is clearly not single valued, i.e., one can find two
distinct values of a, for a single value of temperature. All
this suggests that the temperature does not set a,. Instead, a,
is a strong function of ¢ and is only weakly dependent on f
and I, provided that f>40 Hz and I">2. This is in agree-
ment with inelastic hard-sphere behavior where the only two
relevant parameters are thought to be the filling fraction and
the coefficient of restitution (not investigated in the present
study).

Next, in Fig. 13 we present the dependence on filling
fraction of the experimentally determined five nonzero So-
nine coefficients in the sixth order expansion of A(c)
~22=2a,,Sp(cz). In the theoretical analysis, the higher order
terms (order 3 and above) in the Sonine polynomial expan-
sion are typically neglected to simplify the calculations, the
claim being that this results in no significant loss of accuracy.
In our experimentally generated fluids the higher order So-
nine coefficients assume values less than 1 for filling frac-
tions above ¢=0.5. From this it is clear that it is unnecessary
to consider orders higher than two for intermediate and high
filling fractions. For ¢<<0.5, however, they are significant
and the finite values of as,...,aq are required to fit the in-
creasingly larger regions of stretching exponential tails
which become progressively more wider and propagate to-
wards smaller velocities. As we mentioned in the discussion
of Fig. 9(a) in the previous section, when the filling fraction
decreases, the dynamics of the layer starts resembling that of
the underlying thermal bath set by the rough plate. There the
distribution, becomes increasingly more like a stretched ex-
ponential throughout the full ¢ range, rather than only in its
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tails as is the case at larger values of ¢. This finding is
analogous to a result from Brilliantov and Péschel [37] who
found both theoretically and numerically that the magnitude
of the higher-order Sonine coefficients can grow due to an
increasing impact of the overpopulated high-energy tails of
the distribution function, just like in our system at low ¢.
Their analysis was however performed as a function of the
coefficient of restitution, €, rather than filling fraction. In
their study a single second order Sonine polynomial becomes
insufficient to represent the deviation from Gaussian at low
values of e. Moreover, they worked on the homogeneous
cooling state (HCS), but they suggest that their results should
also apply to granular gases with a thermostat, like in our
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FIG. 13. (Color online) Dependence of higher order coefficients
of the Sonine expansion (a, to ag) on filling fraction.

case. A more direct comparison with this theoretical analysis
is open to further investigation.

We stress that a finite value of the higher order coeffi-
cients does not necessarily imply a large correction to the
deviations A(c). To explore further this point we now quan-
tify the deviations of our experimental velocity distribution
from all the three models we have considered: (1) The equi-
librium Maxwell-Boltzmann distribution, (2) the velocity
distribution function with order-2 Sonine polynomial expan-
sion, and (3) the velocity distribution function with higher
order Sonine polynomial terms. In Fig. 14 we plot these
deviation of experiments from the models as quantified by
X =2 [P(c)exp— P(c)moger)’ for the full range of filling
fractions. We clearly see significant deviation of the experi-
mental data from Maxwell-Boltzmann distribution for all ¢,
whereas the velocity distributions with the order-2 Sonine
polynomial term shows a considerably better agreement with
the experimental data across the whole range of ¢. Even
though the higher order Sonine polynomial expansion char-
acterizes the experimental data more closely, these higher
order contributions are modest compared with the large gain
in accuracy from the order-2 Sonine polynomial alone, and
in the range of ¢>0.44 provide no significant improvement.
Thus the order-2 description obtained by neglecting the
higher order Sonine terms is a reasonably good approxima-
tion to describe the experimental data.

It may seem counterintuitive that the Sonine-like devia-
tion appear to work better at higher values of filling fractions
(¢>0.45), whereas one might expect this formalism to be
more effect at low filling fractions. To address this issue we
now comment on the issue of energy injection into the granu-
lar fluid. In Sec. IV we have characterized the effective ther-
mostat on the projected horizontal plane, by analyzing the
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FIG. 14. (Color online) Deviations (quantified by x?), as a func-
tion of filling fraction, of the experimental velocity distributions
from Maxwell-Boltzmann distribution (CJ), from the velocity distri-
bution function with an order-2 Sonine polynomial correction (V),
and from the velocity distribution function with an order-6 Sonine
polynomial expansion correction (O).

single particles in the cell. In that case, the statistics of a
single particle was completely set by this effective thermo-
stat, which we establish to be non-Gaussian. For finite filling
fractions the dynamics, and hence the temperature, of the
granular fluid is set by a balance between the energy flow
into the system (through the effective thermostat) and the
inelastic interparticle collisions. At low filling fractions we
expect the dynamics to be thermostat dominated and at high
filling fractions for it to be collision dominated. At this
higher values of ¢ there is a large number of inelastic colli-
sions (higher collision rate) which is the main ingredient for
the theoretical model presented and reviewed in Sec. II.
Hence, the Sonine formalism works well in that region. For
¢<0.45, the dynamics is mostly thermostat dominate (over
the interparticle inelastic collisions) and hence, since we do
not have a perfect Gaussian thermostat, we expect more de-
viations from Gaussian.

Zon and MacKintosh [46] have recently introduced a
method for quantifying this relative importance between
particle-substrate interaction (heating) and particle-particle
interactions (collisions). They introduced a new parameter
q=Nc/ Ny, where Ny and N are the average number of heat-
ing and collision events, respectively. For ¢>1 heating
dominates the dissipative collisions and vice versa for g<<1.
Whereas we can easily estimate N from our particle track-
ing data, measuring Ny is considerably more challenging as
it would require information along the z direction on the
vertical motion of the particles along with the knowledge of
the collisions with the rough bottom plate. At present, with
our current experimental technique, we are unable to mea-
sure Ny but it would be of great interest to address this
question in future work. Being able to measure ¢ for the
various system parameters would allow one to establish what
features of the dynamics are thermostat or inelastic collision-
ally driven. In particular, it would be of interest to measure
the Sonine coefficient a, as a function of ¢ for the various
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experimental parameters. We hope that our work will drive
further research in that direction.

VII. CONCLUSION

In conclusion, we have developed an experimental model
system for a quasi-2D granular layer, under homogeneous
stochastic driving. Our experimental technique has allowed
us to randomly thermalize a granular fluid over a wide range
of filling fractions. Our study was centered on the dynamics
of the system, in particular the statistics of velocities. The
temperature of the experimental granular fluid could be ad-
justed by varying the system’s control parameters, namely
the filling fraction, the frequency and acceleration of the
driving and the gap height, with no significant change in the
nature of the velocity probability distribution functions. We
have found an excellent collapse of the distribution functions
if the particle velocities are scaled by a characteristic veloc-
ity v, (the standard deviation of the distributions).

However, the obtained distributions are non-Gaussian. We
have analyzed the deviations from Gaussian behavior in two
distinct regimes. First, we looked at the shape of the distri-
bution tails which scaled as stretched exponentials with ex-
ponent 3/2. Secondly, we have performed an expansion
method that highlights the deviations from a Gaussian at low
velocities (near ¢=0) and found them to be Sonine-like, i.e.,
polynomial of order 4 with fixed coefficients. It is surprising
that this formalism seems applicable at filling fractions as
high as ¢=0.80, whereas kinetic theory is usually thought to
breakdown at much lower values of ¢. Finally, we have
looked at the Sonine polynomial expansion with higher order
terms and concluded that it is sufficient to retain only the
leading order (first nonvanishing) term to maintain reason-
able accuracy. Therefore, we can accurately characterize the
single particle velocity distribution function by introducing a
single extra coefficient a,, in addition to the zeroth, first, and
second moments used for fluids at equilibrium. The coeffi-
cient a, has universal character in the sense that it is a strong
function of filling fraction and only depends weakly on the
other experimental parameters such as the driving frequency
and acceleration.

Having determined the base state of our randomly driven
granular fluid, we hope that an experimental system such as
ours can be used further as a laboratory test bed of some
basic assumptions of kinetic theory. In future work, it would
also be of interest to investigate whether particle-particle ve-
locity correlations [29] are present in our system but this is
beyond the scope of the current investigation.

To our knowledge, this is the first time that the Sonine
corrections of the central high probability regions of the ve-
locity distributions have been measured in an experimental
system, in agreement with analytical predictions. This should
open way to further theoretical developments, crucial if we
are to develop much desired predictive models for granular
flows with practical relevance.
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APPENDIX: PROBABILITY DENSITY FUNCTIONS OF
VELOCITIES USING THE BOTTOM FLAT PLATE

In this appendix we discuss the nature of the velocity
distributions obtained using a flat bottom plate as in the sys-
tem of Olafsen and Urbach [26]. The distributions P(v) are
presented in Fig. 15(a) for a wide range of filling fractions.
Unlike the case of using a rough plate, here there is an enor-
mous variation in the shape of P(v). At low ¢ the distribu-
tions are sharply peaked near c=0. The value of P(v=0) can
differ by over a factor of 20 between low and high ¢. In Fig.
15(b) the distributions P(c)—obtained after rescaling all ve-
locities by the characteristic velocity v, given by Eq.
(17)—do not collapse onto a single curve and show consid-
erably larger deviations from a Maxwell-Boltzmann (solid
line). These distributions only attain the general form found
for the rough case at filling fractions larger than ¢>0.6 and
this is in agreement with the point at which the granular
temperature of both cases coincide—Fig. 4. For this high
values of ¢, both in the rough and flat cases, the contribution
to the thermalization is more important from the large num-
ber interparticle collisions rather than the underlying thermo-
stat. Hence we expect the analysis we have performed
throughout this paper to be applicable to the flat case, for
¢>0.6, but not below this point.

In addition to the discussion on the granular temperature
of Sec. V, these results present further evidence for the sig-
nificant advantage of using a rough bottom plate to generate
the thermostat to heat the granular fluid in a way that may be
more amenable for comparison with theoretical work on in-
elastic hard spheres driven by a stochastic thermostat.
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